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1. Introduction




1.1 Nash Blowup 1. Introduction

* Let X be an algebraic variety an algebraically close field £ with dim X = n,
and X_  C X the smooth locus of X.

* Denote by T'y the tangent sheaf and €2 - sheaf of Kahler differentials.

e Consider the morphism: X_ N P(A™" Qy ),z (5137 A" Qx,x)

Definition 1.1 The Nash blowup of X is defined as Nash(X) = o(X_,,),
the closure of o( X ).

* The morphism 7|y,q,x) : Nash(X) — X is birational, where 7 : P(A"
(05 ) — X is the projection.
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1.1 Nash Blowup 1. Introduction
e If X CAY, then 5: X, — X x Grass(Tyn~,n), x> (z,Tx,) is a
morphism.

4 N

Proposition 1.2 (See for example Ein, De Fernex, Ishii (2008) )
Nash(X) = (X

sm)

Theorem 1.3 (Nobile (1975) ) A Nash blowing-up is the blowup of a
suitable ideal (the Jacobian ideal if X is a hypersurface).
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1.1 Nash Blowup 1. Introduction

4 )
Conjecture 1.4 Assume char(k) = 0.

1. X is desingularized by the iteration of finitely many Nash blowups.

2. X is desingularized by the iteration of finitely many normalized Nash

blowups.
o J

* True for dim X = 1 and part 2. is true for dim X = 2 (see Spivakovsky
(1990) and reference therein).

e As far as | know, little is known in dimension 3.

* Both fails if dim X > 4 (see Castillo, Duarte, Leyton-Alvarez, Liendo (2024)).
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1.2 Nash Blowup of a Coherent Sheaf

Let M be a coherent sheaf on X.

Vs

Definition 1.5 (Oneto, Zatini (1991) ) Assume that M is locally free of
rank r over an open dense U C X. The Nash blowup Nash(X, M) of X
with respect to M is the Zariski closure o (U ), where

Grass(M,r) «—— o(U) = Nash(X, M)

T |Nash(x,27) 1S birational

~
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1.2 Nash Blowup of a Coherent Sheaf 1. Introduction

Proposition 1.6 (Universal Property (Oneto, Zatini (1991))) Ifh : Y —
X is a morphism such that h*M / torsion is locally free, then there exists
a unique morphism v : Y — Nash(X, M) such that

V= 7T|Nash(X,M) o h.

e let 9 AN"M A" MROR(X) = R(X) and & = (A" M), where
R (X) is the sheaf of total quotient rings of X.

Theorem 1.7 (Oneto, Zatini (1991) )
Bl.(X) — Nash(X, M).
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1.3 Higher Nash Blowups 1. Introduction

e Let z € X be a point and z¥) the n-th infinitesimal neighborhood. If z is
smooth, then

T [:L‘('”’)]
is a morphism to the Hilbert scheme of (%) point.

Definition 1.8 (Yasuda (2007)) The k-th Nash blowup Nash, (X) of X is
the closure ', (X, ), Wwhere

THE CITY
UNIVERSITY
OF

NEW YORK

Fei Ye Decomposition of Higher Jacobian Ideals Apr 03, 2025 8/35



1.3 Higher Nash Blowups 1. Introduction

4 N

Proposition 1.9 (Yasuda (2007) ) If char(k) = 0, then,

- v

Let A < X x X be the diagonal and J the ideal sheaf defining A. Denote

by P% = Oy, x/T*! the sheaf of principle part of order k and Q()’;) -

J /751 the sheaf of differentials of order .

Proposition 1.10 (Yasuda (2007); Lé, Yasuda (2024))

n+k

Nash(X, k) = Nash(X, P*) = Nash (X, A("i") 7))

n+k

= Nash(X,Q()?)) = Nash(X,/\( 2 )"l Q

< o
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1.4 Fitting Ideals 1. Introduction

s

~

Definition 1.11 (L&, Yasuda (2024); Nguyen (2024)) The k-th Jacobian
ideal is the smallest Fitting ideal

gk — Fitt(n;—k)_lﬂg;).

J

~

Proposition 1.12 (L&, Yasuda (2024); Nguyen (2024)) If X is a complete
intersection, then

Nash(X, k) = Bl; X.

/

Explicit presentations of Q()I;) were obtained: Duarte (2017) for hypersur-

face, Barajas, Duarte (2020) for complete intersection.
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1.5 Higher Nash Blowup Algebras 1. Introduction
e Let F' € @, be an analytic germ with F'(0) = 0.

Definition 1.13 (Hussain, Ma, Yau, Zuo (2023) ) The k-th Nash blowup
algebrais T, (F) =0, /(F + J.(F)).

Theorem 1.14 (Mather, Yau (1982)) For F,G € O,,, T {(F) = T {(G) iff
(F',0) and (G, 0) are biholomorphic.

Remark 1 The equivalence fails over R and char(k) > 0. (Mather, Yau
(1981)), but under additional conditions (Greuel, Pham (2016)).
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1.5 Higher Nash Blowup Algebras 1. Introduction

Remark 2

1. T, (F)is also called the moduli algebra (Mather, Yau (1981)).
2. T,(F) coincides with the Tjurina algebra

3. Let M. (F) :=0,,/(J(F)). The algebra M, (F') coincides with the
Milnor algebra. But M, (F') is different from the k-th Milnor algebra
defined in Dimca, Gondim, llardi (2020).

4. Mather, Yau (1981) also showed that M, (F') = M . (G) iff F and G
are biholomorphic.
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1.5 Higher Nash Blowup Algebras 1. Introduction

Conjecture 1.15 (Hussain, Ma, Yau, Zuo (2023) ) O,,/(F 4+ J,(F)) are
contact invariants.

* Forn = 2,k = 2: Hussain, Ma, Yau, Zuo (2023)

* Forn = 3,k = 2: Shen, Ramirez, Ye (2025)

® For k = 2:Ye (2025)

e Lé, Yasuda (2024, Theorem 2.5): Conjecture 1.15 holds true.

e Nguyen (2024, Theorem 3.2): The converse of Conjecture 1.15 also holds
true.
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1.6 Higher Jacobian Matrices 1. Introduction

4 N\

Definition 1.16 (k-th Jacobian Matrix') The k-th Jacobian matrix of a
function F' € O, is

Jacy,(F) = (T5.4)

where a € Nl?l, 3 € N8l and

0<|B| <k—1,1<|af <k’

4 G .
w if a>p
8,0 = f

0 otherwise,

where 0% = 9%1---0% and a! = a4 !---ay! fora = (aq, ..., ay).

- /

'This definition differs from Duarte (2017) when |5
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1.6 Higher Jacobian Matrices
Example 1 Let F = 22 + y2. Then

Jacy (F)

Jacg (F)

OO O O O

(o2 2y 1 0 1 0
1

2¢ 2y 1 0 1
=10 0 2z 2y O
0 0 0 2z 2y

2¢ 2y O
0 2z 2y O
0 0 0 2z 2y

0
0
1

o O O O O
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0
1
0
0

0 )
0
1
0

0 00 0222y O

00 0 0 0 22y,
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1.7 Higher Jacobian Ideals 1. Introduction

Proposition 1.17 (L&, Yasuda (2024) ) The k-th Jacobian ideal 51@(1?) of F'
is the ideal of maximal minors of Jac, (F).

* Let Q(F) = 9,,F(8,F)" —29,,F8,Fd,F +0,,F(3,F)’
Example 2 Let F = 22 + y2. Then

Jo(F) = (2%, 2y?, 2%y, v, 2° + y?) = J1(F)° + (Q(F))
Example 3 Let F' = 23 — y2. Then

Jo(F) = (28, 2°y?, 2y, 4, 4ay® — 32*) = 73 + (Q(F))
Example 4 Let F = 22 + y2. Then

J5(F) = 3,(F)° + J3(F)(Q(F)) + (wy, 2 —*) (Q(F))
QY
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2. Structure of 7, (F')




2.1 Main Results 2. Structure of 74 (F)

4 N\

Conjecture 2.1 (Ramirez, Shen, Ye (2024) )
Jo(F) = J1(F)" + J1(F)"20(F),
where O(F) = (Q;;.5;(F)) and
Qijp(F) = 0, FO,FOF — 0, FO,FO, F
0, FO,FO,F + 8, F0,F0,F.

Main Theorem (Ye (2025)) Conjecture 2.1 is true.

® Hussain, Ma, Yau, Zuo (2023) for n = 2, Ramirez, Shen, Ye (2024) forn = 3
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2.1 Main Results

2. Structure of 7, (F)

(

Proposition 2.2 Conjecture 1.15 is true for k = 2.

|

-

Corollary 2.2.1
Jo(F) C J(F)".

~

Remark 3 It was proved by L&, Yasuda (2024) that

n+k:—2)

Je(F) C g1 (F) "
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2.2 Examples and Lemmas 2. Structure of 7, (F)
* Write f, := 0, F, fij = az-jF, and Qij;kl = Qz’j;kl<F)‘

t-th

° Let B’L — (O, ...,O, ]. ,O, ...,O) and /B’L,j = B’L _I_ /B].

* Rows and columns of Jac, (F') can be labeled using 3; and §3;; respectively.

* With the above notations, the (8, 8;;) entry of Jac, (F) is

(f; ifi=k
Jacy (F)(Br, Bi;) =4 f; ifi=3

0 otherwise.

\\
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2.2 Examples and Lemmas 2. Structure of 74 (F)
Example 5 (Powers of monomials are determinant of submatrices)

ﬁll 612 ﬁ23 545 655 /656 667 678
oy / fi fo O 0 0 0 0 O \

B, 0 f f4 0 0 0 0 O
Byl 0 0 f, O 0 0 0 0
B0 0 0 f [OT00 0
B0 0 0 f f5 fo O O
Bs| 0 0 S0 O fs fr 0
610 0 0 o fo J
sl 00 0 o Iz

Fei Ye Decomposition of Higher Jacobian Ideals Apr 03, 2025 21/35



2.2 Examples and Lemmas 2. Structure of 7, (F)

Lemma 2.3 let M = JaCz(F)([5i1» ...,Bir], [5i1,j1’ ""Bir,jr]) be as
submatrix of the second Jacobian matrix Jac, (F'). If

Z]. < ceey < ?:,,, and ]]_ S oo S jr)
Then

det M = ﬁf-r.
i=1
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2.2 Examples and Lemmas 2. Structure of 74 (F)
Example 6 (Powers of monomials are determinant of submatrices)

511 514 546 566 577 ﬁlS 512 515 538

bo( L fu fu e m fuw fo fis fs
5 1 f 1 f 4 0 0 0 f 3 f 2 f 5 0

G, 0 fi fo O 0 0O 0 O 0

Bs|l 0 0 fi fs 0 0O 0 O 0

Bz 0O 0 O 0 fr 0O 0 O 0

Bzl 0O 0 0 0 0  f, 0 0 fq

Gyl 0 0 0 0 0 0

Bs] 0 0 0 0 0 0

Bs \ 0 0 O 0 0 0
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2.2 Examples and Lemmas 2. Structure of 7, (F)

Lemma 2.4 Let M be a maximal square submatrix of Jac, (F'), then M
is permutation equivalent to a block upper triangular matrix, i.e.,

/D ¥ % % )
0 B, *x *
M= 0O 0 - 0
\0 0 OBl/
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Example 7 Case: (i — j)(i — j)

A
det| Ji Jfj 0 | = 5@
0 fi

Case: (i — j)(k — 1)

(fie Fix fa Fii Fun
fr 0 f; 0 O
det| O fr O f; O = fmJ1Qij.ki
fo £, 00 0
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Example 8 Case: (i — j)(k —1) — il

(Foe T T Fim 300 B\ (£ Fa Fo Fom 20 Fim
fo 00 f, 0 0 0 £, 0 fn 0 0
0 f £ 0 0 of ~|f 00 0 0 o0
“lp s 00 0 0| %Y 0 0 0 o0
0 0 f, 0 fi Jfn O f 0 0 fi fn
0.0 0 f 0 f, \ 0 0 0 fi 0 fi)

\

fr, 0 0

= det 0 fl fm Qz],kl( ) f fl ngkl( )
fi 0 fi
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Example 9 Case: (i — j)(i — k) — ik

/%fz'z' fij Fie Tri fjl\ /%fm Fik %fjj Tt sz\
fi £ 0 0 0 fi £ 00 0
det| 0 f f, 0 f |+det| 0 0 f 0 f
0 0 f f O 0 fi 0 f O
0 0 0 f fy 0 0 0 fi £y

THE CITY
UNIVER SITY
OF

NEW YORK

Fei Ye Decomposition of Higher Jacobian Ideals Apr 03, 2025 27 /35



Lemma 2.5 Given a maximal square submatrix M of Jac,(F'). One of
the following holds true:

1. det(M) =0,

2. det(M) is in the form @ - P -det(A), where, Q € 9(F), P is a
monomial in J{(F)P, and A is a submatrix such that det(A) €
Jy(F) 2P,

3. There exists another matrix N such that det(M) + det(V) is in the
formQ 4 - P, - det(A) + Qg - Pg - det(B),where @ 4,Q5 € 9(F),
P,e J,(F)P, Pge J,(F)? and Aand B are submatrices such that
det(A) € F,(F)*?Panddet(B) € ,(F)* 4.
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3. Ideas of the Proofs




3.1 Proof of the Main Theorem
* Let M be a maximal submatrix of Jac, (F).

Lemma 2.3 implies the following proposition.

-

Proposition 3.1

& J1(F)" C J4(F).

1. If M contains a column 3,,, then det(M) € F,(F)"*1.

Lemma 2.5 implies the following proposition.

s

Proposition 3.2

\ 2. Q(Fd,(FY" 2% C g,(F).

1. If Mcontains no column S, then det(M) € OQ(F)J,(F)" 2.

/
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3.2 Vectorization and Tensor 3. Ideas of the Proofs

Let E;,; be the skew-symmetric matrix whose only nonzero entries are the
(4,7) and (7, %) entries, moreover, the (i, j) entryis 1 if i < j.

Lemma 3.3
Qz‘j;kl(F) —
Vec (Hess(F)T) - E;; ® By, - Vec (JaC(F)T Jac(F)),

where Jac (F) = V(F)T is the Jacobian matrix, Hess(F) =
Jact (Jac(F)) = Jac(V(F))! is the Hessian matrix, and Vec(M) is the
vectorization of the matrix M which is a column vector obtained by
stacking column vectors of M.
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3.2 Vectorization and Tensor 3. Ideas of the Proofs

Example 10 For F' = z2 + y? € C{z, y},

Jac,(F') = (2z,2y), Hess(F) = ((2) (2))’ and

Q1210 = 8z* + 8y*

~ Vec ((g )

(/00 0 1\ [4z2)

0O —10 4x

=2002)-1, 1 ¢ ¢ 4353
\1 0 0 0] \49?
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3.3 Chain Rules 3. Ideas of the Proofs

Lemma 3.4 (Chain Rule for Jacobian)
Jac(F o ) = Jac(F') o ¢ - Jac(p).

Lemma 3.5 (Chain Rule for Hessian) Set ¢ = (¢, ..., . )" . Then

Hess(F o )

= Jac(p)? (Hess(F) o gp) Jac(p) + ki:((?kF o Hess(gok)).
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3.4 HMYZ Conjecture

e The product rule implies

Lemma 3.6 If u € O,, is a unit, then

Jo(ulF) = Fo(F).

* Chain rules and the characterization of @), .,.; leads to

17k
Lemma 3.7

J1(Fop) C T (F)o.

OFop) C (QF)op+7,(F)*) o

* HMYZ conjecture for k = 2 follows by applying inverses.
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3.5 Questions 3. Ideas of the Proofs

Question 1 Does 7, (F') have a similar decomposition structure?

Question 2 Can one give a proof of the decomposition using properties
of Fitting ideals?
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for your attention!
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