

Decomposition of Higher Jacobian Ideals

AG@PUI

Fei Ye

GC and QCC of CUNY Apr 03, 2025

Outline

1. Introduction 2	2.3 Minors of $\operatorname{Jac}_2(F)$ 25
1.1 Nash Blowup 3	3. Ideas of the Proofs29
1.2 Nash Blowup of a Coherent	3.1 Proof of the Main
Sheaf 6	Theorem 30
1.3 Higher Nash Blowups 8	3.2 Vectorization and Tensor 31
1.4 Fitting Ideals 10	3.3 Chain Rules
1.5 Higher Nash Blowup	3.4 HMYZ Conjecture 34
Algebras 11	3.5 Questions
1.6 Higher Jacobian Matrices . 14	References 36
1.7 Higher Jacobian Ideals 16	
2. Structure of $\mathcal{J}_2(F)$	
2.1 Main Results 18	
2.2 Examples and Lemmas 20	

1. Introduction

1.1 Nash Blowup

1. Introduction

- Let X be an algebraic variety an algebraically close field k with $\dim X = n$, and $X_{\rm sm} \subseteq X$ the smooth locus of X.
- Denote by T_X the tangent sheaf and Ω_X sheaf of Kähler differentials.
- $\bullet \ \ \text{Consider the morphism:} \ X_{\mathrm{sm}} \stackrel{\sigma}{\longrightarrow} \mathbb{P}(\wedge^n \ \Omega_X), x \mapsto \left(x, \wedge^n \ \Omega_{X,x}\right)$

Definition 1.1 The Nash blowup of X is defined as $\operatorname{Nash}(X) = \overline{\sigma(X_{\operatorname{sm}})}$, the closure of $\sigma(X_{\operatorname{sm}})$.

• The morphism $\pi|_{\mathrm{Nash}(X)}:\mathrm{Nash}(X)\longrightarrow X$ is birational, where $\pi:\mathbb{P}(\wedge^n\Omega_X)\longrightarrow X$ is the projection.

1.1 Nash Blowup

1. Introduction

• If $X\subset \mathbb{A}^N$, then $\tilde{\sigma}:X_{\mathrm{sm}}\longrightarrow X\times\mathrm{Grass}(T_{\mathbb{A}^N},n)$, $x\mapsto \left(x,T_{X,x}\right)$ is a morphism.

Proposition 1.2 (See for example Ein, De Fernex, Ishii (2008))

$$\operatorname{Nash}(X) = \overline{\tilde{\sigma}(X_{\operatorname{sm}})}$$

Theorem 1.3 (Nobile (1975)) A Nash blowing-up is the blowup of a suitable ideal (the Jacobian ideal if X is a hypersurface).

1.1 Nash Blowup

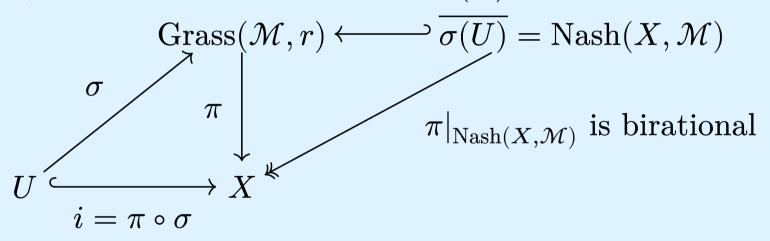
1. Introduction

Conjecture 1.4 Assume char(k) = 0.

- 1. X is desingularized by the iteration of finitely many Nash blowups.
- 2. X is desingularized by the iteration of finitely many normalized Nash blowups.
- True for $\dim X = 1$ and part 2. is true for $\dim X = 2$ (see Spivakovsky (1990) and reference therein).
- As far as I know, little is known in dimension 3.
- Both fails if $\dim X \ge 4$ (see Castillo, Duarte, Leyton-Álvarez, Liendo (2024)).

Let \mathcal{M} be a coherent sheaf on X.

Definition 1.5 (Oneto, Zatini (1991)) Assume that $\mathcal M$ is locally free of rank r over an open dense $U\subset X$. The Nash blowup $\operatorname{Nash}(X,\mathcal M)$ of X with respect to $\mathcal M$ is the Zariski closure $\overline{\sigma(U)}$, where



1.2 Nash Blowup of a Coherent Sheaf

1. Introduction

Proposition 1.6 (Universal Property (Oneto, Zatini (1991))) If $h:Y\longrightarrow$

X is a morphism such that $h^*\mathcal{M}/\operatorname{torsion}$ is locally free, then there exists a unique morphism $\nu:Y\longrightarrow\operatorname{Nash}(X,\mathcal{M})$ such that

$$u = \pi|_{\operatorname{Nash}(X,\mathcal{M})} \circ h.$$

• Let $\varphi: \wedge^r \mathcal{M} \to \wedge^r \mathcal{M} \otimes \mathcal{R}(X) \xrightarrow{\sim} \mathcal{R}(X)$ and $\mathcal{E} = \varphi(\wedge^r \mathcal{M})$, where $\mathcal{R}(X)$ is the sheaf of total quotient rings of X.

Theorem 1.7 (Oneto, Zatini (1991))

$$\mathrm{Bl}_{\mathcal{E}}(X) \overset{\sim}{\to} \mathrm{Nash}(X,\mathcal{M}).$$

1.3 Higher Nash Blowups

1. Introduction

• Let $x \in X$ be a point and $x^{(k)}$ the n-th infinitesimal neighborhood. If x is smooth, then

$$\sigma_k: X_{\mathrm{sm}} \longrightarrow \mathrm{Hilb}_{\binom{n+k}{k}}(X)$$
$$x \mapsto \left[x^{(n)}\right]$$

is a morphism to the Hilbert scheme of $\binom{n+k}{k}$ point.

Definition 1.8 (Yasuda (2007)) The k-th Nash blowup $\mathrm{Nash}_k(X)$ of X is the closure $\overline{\Gamma_k(X_\mathrm{sm})}$, where

$$\Gamma_k = \operatorname{id} \times \sigma_k : X_{\operatorname{sm}} \longrightarrow X \times \operatorname{Hilb}_{\binom{n+k}{k}}(X).$$

1.3 Higher Nash Blowups

1. Introduction

Proposition 1.9 (Yasuda (2007)) If $\operatorname{char}(k) = 0$, then,

$$\operatorname{Nash}_k(X) \stackrel{\sim}{\longrightarrow} \overline{\sigma_k(X_{\operatorname{sm}})}.$$

• Let $\Delta\hookrightarrow X\times X$ be the diagonal and $\mathcal I$ the ideal sheaf defining Δ . Denote by $\mathcal P_X^k=\mathcal O_{X\times X}/\mathcal I^{k+1}$ the sheaf of principle part of order k and $\Omega_X^{(k)}=\mathcal I/\mathcal I^{k+1}$ the sheaf of differentials of order k.

Proposition 1.10 (Yasuda (2007); Lê, Yasuda (2024))

$$\begin{split} \operatorname{Nash}(X,k) &= \operatorname{Nash}\big(X,\mathcal{P}^k\big) = \operatorname{Nash}\Big(X,\wedge^{\binom{n+k}{k}}\,\mathcal{P}_X^{(k)}\Big) \\ &= \operatorname{Nash}\Big(X,\Omega_X^{(k)}\Big) = \operatorname{Nash}\Big(X,\wedge^{\binom{n+k}{k}-1}\,\Omega_X^{(k)}\Big). \end{split}$$

1.4 Fitting Ideals

1. Introduction

Definition 1.11 (Lê, Yasuda (2024); Nguyen (2024)) The k-th Jacobian ideal is the smallest Fitting ideal

$$\mathcal{J}_k = \mathbf{Fitt}_{\binom{n+k}{k}-1} \Omega_X^{(k)}.$$

Proposition 1.12 (Lê, Yasuda (2024); Nguyen (2024)) If X is a complete intersection, then

$$\operatorname{Nash}(X, k) = \operatorname{Bl}_{\mathcal{J}_k} X.$$

• Explicit presentations of $\Omega_X^{(k)}$ were obtained: Duarte (2017) for hypersurface, Barajas, Duarte (2020) for complete intersection.

1.5 Higher Nash Blowup Algebras

1. Introduction

• Let $F \in \mathcal{O}_n$ be an analytic germ with F(0) = 0.

Definition 1.13 (Hussain, Ma, Yau, Zuo (2023)) The k-th Nash blowup algebra is $\mathcal{T}_k(F)=\mathcal{O}_n/(F+\mathcal{J}_k(F)).$

Theorem 1.14 (Mather, Yau (1982)) For $F,G\in\mathcal{O}_n$, $\mathcal{T}_1(F)=\mathcal{T}_1(G)$ iff (F,0) and (G,0) are biholomorphic.

Remark 1 The equivalence fails over \mathbb{R} and $\mathrm{char}(k) > 0$. (Mather, Yau (1981)), but under additional conditions (Greuel, Pham (2016)).

1.5 Higher Nash Blowup Algebras

1. Introduction

Remark 2

- 1. $\mathcal{T}_k(F)$ is also called the moduli algebra (Mather, Yau (1981)).
- 2. $\mathcal{T}_1(F)$ coincides with the Tjurina algebra
- 3. Let $\mathcal{M}_k(F) \coloneqq \mathcal{O}_n/(\mathcal{J}_k(F))$. The algebra $\mathcal{M}_1(F)$ coincides with the Milnor algebra. But $\mathcal{M}_k(F)$ is different from the k-th Milnor algebra defined in Dimca, Gondim, Ilardi (2020).
- 4. Mather, Yau (1981) also showed that $\mathcal{M}_k(F)=\mathcal{M}_k(G)$ iff F and G are biholomorphic.

1.5 Higher Nash Blowup Algebras

1. Introduction

Conjecture 1.15 (Hussain, Ma, Yau, Zuo (2023)) $\mathcal{O}_n/(F+\mathcal{J}_k(F))$ are contact invariants.

- For n = 2, k = 2: Hussain, Ma, Yau, Zuo (2023)
- For n = 3, k = 2: Shen, Ramirez, Ye (2025)
- For k = 2: Ye (2025)
- Lê, Yasuda (2024, Theorem 2.5): Conjecture 1.15 holds true.
- Nguyen (2024, Theorem 3.2): The converse of Conjecture 1.15 also holds true.

1.6 Higher Jacobian Matrices

1. Introduction

Definition 1.16 (k**-th Jacobian Matrix¹)** The k-th Jacobian matrix of a function $F \in \mathcal{O}_n$ is

$$\operatorname{Jac}_k(F) = \left(r_{\beta,\alpha}\right)_{0 \leq |\beta| \; \leq k-1, 1 \leq |\alpha| \; \leq k},$$

where $\alpha \in \mathbb{N}^{|\alpha|}$, $\beta \in \mathbb{N}^{|\beta|}$, and

$$r_{eta,lpha} \coloneqq egin{cases} rac{\partial^{lpha-eta}F}{(lpha-eta)!} & ext{if} & lpha > eta \ 0 & ext{otherwise}, \end{cases}$$

where $\partial^{\alpha} = \partial^{\alpha_1} \cdots \partial^{\alpha_d}$ and $\alpha! = \alpha_1! \cdots \alpha_d!$ for $\alpha = (\alpha_1, ..., \alpha_d)$.

¹This definition differs from Duarte (2017) when $|\beta|=0$ and $|\alpha|=1$.

1.6 Higher Jacobian Matrices

1. Introduction

Example 1 Let $F = x^2 + y^2$. Then

$$\operatorname{Jac}_{2}(F) = \begin{pmatrix} 2x & 2y & 1 & 0 & 1\\ 0 & 0 & 2x & 2y & 0\\ 0 & 0 & 0 & 2x & 2y \end{pmatrix}$$

$$\operatorname{Jac}_{3}(F) = \begin{pmatrix} 2x & 2y & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2x & 2y & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2x & 2y & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2x & 2y & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2x & 2y & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2x & 2y \end{pmatrix}$$

1.7 Higher Jacobian Ideals

1. Introduction

Proposition 1.17 (Lê, Yasuda (2024)) The k-th Jacobian ideal $\mathcal{J}_{k(F)}$ of F is the ideal of maximal minors of $\mathrm{Jac}_k(F)$.

$$\bullet \ \ \mathrm{Let} \ Q(F) = \partial_{xx} F \big(\partial_y F \big)^2 - 2 \partial_{xy} F \partial_x F \partial_y F + \partial_{yy} F (\partial_x F)^2$$

Example 2 Let $F = x^2 + y^2$. Then

$$\mathcal{J}_2(F) = \left(x^3, xy^2, x^2y, y^3, x^2 + y^2 \right) = \mathcal{J}_1(F)^3 + (Q(F))$$

Example 3 Let $F = x^3 - y^2$. Then

$$\mathcal{J}_2(F) = \left(x^6, x^2y^2, x^4y, y^3, 4xy^2 - 3x^4\right) = \mathcal{J}_1^3 + \left(Q(F)\right)$$

Example 4 Let $F = x^2 + y^2$. Then

$$\mathcal{J}_{3}(F) = \mathcal{J}_{1}(F)^{6} + \mathcal{J}_{1}^{3}(F)(Q(F)) + (xy, x^{2} - y^{2})(Q(F))$$

2. Structure of $\mathcal{J}_2(F)$

2.1 Main Results

2. Structure of $\mathcal{J}_2(F)$

Conjecture 2.1 (Ramirez, Shen, Ye (2024))

Main Theorem (Ye (2025)) Conjecture 2.1 is true.

• Hussain, Ma, Yau, Zuo (2023) for n=2, Ramirez, Shen, Ye (2024) for n=3

2.1 Main Results

2. Structure of $\mathcal{J}_2(F)$

Proposition 2.2 Conjecture 1.15 is true for k=2.

Corollary 2.2.1

$$\mathcal{J}_2(F)\subset \mathcal{J}_1(F)^n.$$

Remark 3 It was proved by Lê, Yasuda (2024) that

$$\mathcal{J}_k(F) \subset \mathcal{J}_1(F)^{\binom{n+k-2}{n-1}}.$$

- 2. Structure of $\mathcal{J}_2(F)$
- Write $f_i:=\partial_i F$, $f_{ij}:=\partial_{ij} F$, and $Q_{ij;kl}:=Q_{ij;kl}(F)$.
- Let $\beta_i=\left(0,...,0,\stackrel{i ext{-th}}{1},0,...,0\right)$ and $\beta_{i,j}=\beta_i+\beta_j.$
- Rows and columns of $\mathrm{Jac}_2(F)$ can be labeled using β_i and β_{ij} respectively.
- With the above notations, the $\left(\beta_k,\beta_{ij}\right)$ entry of $\mathrm{Jac}_2(F)$ is

$$\operatorname{Jac}_2(F)\big(\beta_k,\beta_{ij}\big) = \begin{cases} f_j & \text{if } i=k\\ f_i & \text{if } i=j\\ 0 & \text{otherwise.} \end{cases}$$

2. Structure of $\mathcal{J}_2(F)$

Example 5 (Powers of monomials are determinant of submatrices)

	eta_{11}	eta_{12}	eta_{23}	eta_{45}	eta_{55}	eta_{56}	eta_{67}	eta_{78}
eta_1	$\int f_1$	f_2	0	0	0	0	0	0
eta_2	0	f_1^-	f_3	0	0	0	0	0
eta_3	0	0	f_2	0	0	0	0	0
eta_4	0	0	0	f_5	0	0	0	0
eta_5	0	0	0	f_4	f_5	f_6	0	0
eta_6	0	0	0	0	0	f_5	f_7	0
eta_7	0	0	0	0	0	0	f_6	f_8
eta_8	0	0	0	0	0	0	0	f_7
				'				

Apr 03, 2025

2. Structure of $\mathcal{J}_2(F)$

Lemma 2.3 Let $M=\operatorname{Jac}_2(F)\left(\left[\beta_{i_1},...,\beta_{i_r}\right],\left[\beta_{i_1,j_1},...,\beta_{i_r,j_r}\right]\right)$ be as submatrix of the second Jacobian matrix $\operatorname{Jac}_2(F)$. If

$$i_1 < ..., < i_r \text{ and } j_1 \le ... \le j_r,$$

Then

$$\det M = \prod_{i=1}^r f_{j_r}.$$

Apr 03, 2025

2. Structure of $\mathcal{J}_2(F)$

Example 6 (Powers of monomials are determinant of submatrices)

	β_{11}	eta_{14}	eta_{46}	eta_{66}	eta_{77}	eta_{13}	eta_{12}	eta_{15}	eta_{38} ,
eta_0	$\frac{1}{2}f_{11}$	f_{14}	f_{46}	$\frac{1}{2}f_{66}$	$rac{1}{2}f_{77}$	f_{13}	f_{12}	f_{15}	f_{38}
eta_1	f_1	f_4	0	0	0	f_3	f_2	f_5	0
eta_4	0	f_1	f_6	0	0	0	0	0	0
eta_6	0	0	f_4	f_6	0	0	0	0	0
eta_7	0	0	0	0	f_7	0	0	0	0
eta_3	0	0	0	0	0	f_1	0	0	f_8
eta_2	0	0	0	0	0	0	f_1	0	0
eta_5	0	0	0	0	0	0	0	f_1	0
eta_8	0	0	0	0	0	0	0	0	f_3
	\								

2. Structure of $\mathcal{J}_2(F)$

Lemma 2.4 Let M be a maximal square submatrix of $\operatorname{Jac}_2(F)$, then M is permutation equivalent to a block upper triangular matrix, i.e.,

$$M = \begin{pmatrix} D & * & * & * \\ 0 & B_m & * & * \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & B_1 \end{pmatrix}.$$

2.3 Minors of $\operatorname{Jac}_2(F)$

2. Structure of $\mathcal{J}_2(F)$

Example 7 Case: (i-j)(i-j)

$$\det \begin{pmatrix} \frac{1}{2} f_{ii} & f_{ij} & \frac{1}{2} f_{jj} \\ f_i & f_j & 0 \\ 0 & f_i & f_j \end{pmatrix} = \frac{1}{2} Q_{ij;ij}$$

Case: (i - j)(k - l)

$$\det\begin{pmatrix} f_{ik} & f_{jk} & f_{il} & f_{jl} & f_{lm} \\ f_k & 0 & f_l & 0 & 0 \\ 0 & f_k & 0 & f_l & 0 \\ f_i & f_j & 0 & 0 & 0 \\ 0 & 0 & f_i & f_j & f_m \end{pmatrix} = f_m f_l Q_{ij;kl}$$

2.3 Minors of $Jac_2(F)$

2. Structure of $\mathcal{J}_2(F)$

Example 8 Case: (i-j)(k-l)-il

$$\det\begin{pmatrix} f_{ik} & f_{jk} & f_{jl} & f_{im} & \frac{1}{2}f_{ll} & f_{lm} \\ f_k & 0 & 0 & f_m & 0 & 0 \\ 0 & f_k & f_l & 0 & 0 & 0 \\ f_i & f_j & 0 & 0 & 0 & 0 \\ 0 & 0 & f_j & 0 & f_l & f_m \\ 0 & 0 & 0 & f_i & 0 & f_l \end{pmatrix} - \det\begin{pmatrix} f_{jj} & f_{il} & f_{kk} & f_{im} & \frac{1}{2}f_{ll} & f_{lm} \\ 0 & f_l & 0 & f_m & 0 & 0 \\ f_j & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & f_k & 0 & 0 & 0 \\ 0 & 0 & f_k & 0 & 0 & 0 \\ 0 & 0 & 0 & f_l & f_m \\ 0 & 0 & 0 & f_l & 0 & f_l \end{pmatrix}$$

$$= \det \begin{pmatrix} f_m & 0 & 0 \\ 0 & f_l & f_m \\ f_i & 0 & f_l \end{pmatrix} Q_{ij;kl}(F) = f_m f_l^2 Q_{ij;kl}(F)$$

2.3 Minors of $Jac_2(F)$

2. Structure of $\mathcal{J}_2(F)$

Example 9 Case: (i-j)(i-k)-ik

$$\det\begin{pmatrix} \frac{1}{2}f_{ii} & f_{ij} & f_{jk} & f_{kl} & f_{jl} \\ f_i & f_j & 0 & 0 & 0 \\ 0 & f_i & f_k & 0 & f_l \\ 0 & 0 & f_j & f_l & 0 \\ 0 & 0 & 0 & f_k & f_j \end{pmatrix} + \det\begin{pmatrix} \frac{1}{2}f_{ii} & f_{ik} & \frac{1}{2}f_{jj} & f_{kl} & f_{jl} \\ f_i & f_k & 0 & 0 & 0 \\ 0 & 0 & f_j & 0 & f_l \\ 0 & f_i & 0 & f_l & 0 \\ 0 & 0 & 0 & f_k & f_j \end{pmatrix}$$

$$= \det \begin{pmatrix} f_l & 0 \\ 0 & f_l \end{pmatrix} Q_{ij;ik}(F) - \det \begin{pmatrix} 0 & f_l \\ f_k & f_j \end{pmatrix} Q_{ij;ij}(F)$$

$$= f_j f_l Q_{ij;ik}(F) + f_k f_l Q_{ij;ij}(F)$$

2.3 Minors of $\operatorname{Jac}_2(F)$

2. Structure of $\mathcal{J}_2(F)$

Lemma 2.5 Given a maximal square submatrix M of $\mathrm{Jac}_2(F)$. One of the following holds true:

- 1. $\det(M) = 0$,
- 2. $\det(M)$ is in the form $Q\cdot P\cdot \det(A)$, where, $Q\in \mathcal{Q}(F)$, P is a monomial in $\mathcal{J}_1(F)^p$, and A is a submatrix such that $\det(A)\in \mathcal{J}_1(F)^{n-2-p}$.
- 3. There exists another matrix N such that $\det(M) + \det(N)$ is in the form $Q_A \cdot P_A \cdot \det(A) + Q_B \cdot P_B \cdot \det(B)$, where $Q_A, Q_B \in \mathcal{Q}(F)$, $P_A \in \mathcal{J}_1(F)^p$, $P_B \in \mathcal{J}_1(F)^q$, and A and B are submatrices such that $\det(A) \in \mathcal{J}_1(F)^{n-2-p}$ and $\det(B) \in \mathcal{J}_1(F)^{n-2-q}$.

Fei Ye

3. Ideas of the Proofs

3.1 Proof of the Main Theorem

3. Ideas of the Proofs

• Let M be a maximal submatrix of $\operatorname{Jac}_2(F)$.

Lemma 2.3 implies the following proposition.

Proposition 3.1

- 1. If M contains a column β_{0i} , then $\det(M) \in \mathcal{J}_1(F)^{n+1}$.
- 2. $\mathcal{J}_1(F)^{n+1} \subset \mathcal{J}_2(F)$.

Lemma 2.5 implies the following proposition.

Proposition 3.2

- 1. If M contains no column β_{0i} , then $\det(M) \in \mathcal{Q}(F)\mathcal{J}_1(F)^{n-2}$.
- 2. $\mathcal{Q}(F)\mathcal{J}_1(F)^{n-2}\subset\mathcal{J}_2(F)$.

3.2 Vectorization and Tensor

3. Ideas of the Proofs

Let E_{ij} be the skew-symmetric matrix whose only nonzero entries are the (i,j) and (j,i) entries, moreover, the (i,j) entry is 1 if i < j.

Lemma 3.3

$$Q_{ij;kl}(F) =$$

$$\operatorname{Vec} \, \Big(\operatorname{Hess}(F)^T \Big) \cdot E_{ij} \otimes E_{kl} \cdot \operatorname{Vec} \Big(\operatorname{Jac}(F)^T \, \operatorname{Jac}(F) \Big),$$

where $\operatorname{Jac}(F) = \nabla(F)^T$ is the Jacobian matrix, $\operatorname{Hess}(F) = \operatorname{Jac}^T(\operatorname{Jac}(F)) = \operatorname{Jac}(\nabla(F))^T$ is the Hessian matrix, and $\operatorname{Vec}(M)$ is the vectorization of the matrix M which is a column vector obtained by stacking column vectors of M.

Apr 03, 2025

3.2 Vectorization and Tensor

3. Ideas of the Proofs

Example 10 For
$$F=x^2+y^2\in\mathbb{C}\{x,y\}$$
,

$$\operatorname{Jac}_1(F) = (2x, 2y), \quad \operatorname{Hess}(F) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad \text{and}$$

$$Q_{12:12} = 8x^4 + 8y^4$$

$$= \operatorname{Vec} \left(\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right)^T \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \operatorname{Vec} \left(\begin{pmatrix} 2x \\ 2y \end{pmatrix} (2x \ 2y) \right)$$

$$= (2 \ 0 \ 0 \ 2) \cdot \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 4x^2 \\ 4xy \\ 4xy \\ 4y^2 \end{pmatrix}.$$

3.3 Chain Rules

3. Ideas of the Proofs

Lemma 3.4 (Chain Rule for Jacobian)

$$\operatorname{Jac}(F \circ \varphi) = \operatorname{Jac}(F) \circ \varphi \cdot \operatorname{Jac}(\varphi).$$

Lemma 3.5 (Chain Rule for Hessian) Set $\varphi = (\varphi_1, ..., \varphi_n)^T$. Then

$$\operatorname{Hess}(F\circ\varphi)$$

$$=\operatorname{Jac}(\varphi)^T \Big(\operatorname{Hess}(F)\circ\varphi\Big)\operatorname{Jac}(\varphi) + \sum_{k=1}^n \Big(\partial_k F\circ\varphi \ \operatorname{Hess}(\varphi_k)\Big).$$

Apr 03, 2025

3.4 HMYZ Conjecture

3. Ideas of the Proofs

The product rule implies

Lemma 3.6 If $u \in \mathcal{O}_n$ is a unit, then

$$\mathcal{J}_2(uF)=\mathcal{J}_2(F).$$

ullet Chain rules and the characterization of $Q_{i\, i:kl}$ leads to

Lemma 3.7

$$\mathcal{J}_1(F\circ\varphi)\subseteq\mathcal{J}_1(F)\circ\varphi.$$

$$\mathcal{Q}(F\circ\varphi)\subseteq \left(\mathcal{Q}(F)\circ\varphi+\mathcal{J}_1(F)^3\right)\circ\varphi.$$

• HMYZ conjecture for k=2 follows by applying inverses.

3.5 Questions

3. Ideas of the Proofs

Question 1 Does $\mathcal{J}_k(F)$ have a similar decomposition structure?

Question 2 Can one give a proof of the decomposition using properties of Fitting ideals?

Apr 03, 2025

Thank you for your attention!

- [1] L. Ein, T. De Fernex, and S. Ishii, "Divisorial Valuations via Arcs," *Publications of the Research Institute for Mathematical Sciences*, vol. 44, no. 2, pp. 425–448, Jun. 2008, doi: 10.2977/prims/1210167333.
- [2] A. Nobile, "Some Properties of the Nash Blowing-Up.," *Pacific Journal of Mathematics*, vol. 60, no. 1, pp. 297–305, Jan. 1975, doi: 10.2140/pjm.1975.60.297.
- [3] M. Spivakovsky, "Sandwiched Singularities and Desingularization of Surfaces by Normalized Nash Transformations," *Annals of Mathematics*, vol. 131, no. 3, pp. 411–491, 1990, doi: 10.2307/1971467.
- [4] F. Castillo, D. Duarte, M. Leyton-Álvarez, and A. Liendo, "Nash Blowup Fails to Resolve Singularities in Dimensions Four and Higher," no. arXiv:2409.19767. arXiv, Oct. 2024. doi: 10.48550/arXiv.2409.19767.

- [5] A. Oneto and E. Zatini, "Remarks on Nash Blowing-Up," *Università e Politecnico Di Torino*, vol. 49. pp. 71–82, 1991.
- [6] T. Yasuda, "Higher Nash Blowups," *Compositio Mathematica*, vol. 143, no. 6, pp. 1493–1510, Nov. 2007, doi: 10.1112/S0010437X0700276X.
- [7] Q. T. Lê and T. Yasuda, "Higher Jacobian Ideals, Contact Equivalence and Motivic Zeta Functions," *Revista Matemática Iberoamericana*, Oct. 2024, doi: 10.4171/rmi/1516.
- [8] H. D. Nguyen, "Mather-Yau's Type Theorem for Higher Nash Blowup Algebras," no. arXiv:2412.07254. arXiv, Dec. 2024. doi: 10.48550/arXiv.2412.07254.

- [9] D. Duarte, "Computational Aspects of the Higher Nash Blowup of Hypersurfaces," *Journal of Algebra*, vol. 477, pp. 211–230, May 2017, doi: 10.1016/j.jalgebra.2016.12.026.
- [10] P. Barajas and D. Duarte, "On the Module of Differentials of Order n of Hypersurfaces," *Journal of Pure and Applied Algebra*, vol. 224, no. 2, pp. 536–550, Feb. 2020, doi: 10.1016/j.jpaa.2019.05.020.
- [11] N. Hussain, G. Ma, S. S. T. Yau, and H. Zuo, "Higher Nash Blow-up Local Algebras of Singularities and Its Derivation Lie Algebras," *Journal of Algebra*, vol. 618, pp. 165–194, Mar. 2023, doi: 10.1016/j.jalgebra.2022.11.016.

- [12] J. N. Mather and S. S.-T. Yau, "Classification of Isolated Hypersurface Singularities by Their Moduli Algebras," *Inventiones mathematicae*, vol. 69, no. 2, pp. 243–251, Jun. 1982, doi: 10.1007/BF01399504.
- [13] J. N. Mather and S. S.-T. Yau, "Criterion for Biholomorphic Equivalence of Isolated Hypersurface Singularities," *Proceedings of the National Academy of Sciences*, vol. 78, no. 10, pp. 5946–5947, Oct. 1981, doi: 10.1073/pnas.78.10.5946.
- [14] G.-M. Greuel and T. H. Pham, "Mather-Yau Theorem in Positive Characteristic," *Journal of Algebraic Geometry*, vol. 26, no. 2, pp. 347–355, Sep. 2016, doi: 10.1090/jag/669.

- [15] A. Dimca, R. Gondim, and G. Ilardi, "Higher Order Jacobians, Hessians and Milnor Algebras," *Collectanea Mathematica*, vol. 71, no. 3, pp. 407–425, Sep. 2020, doi: 10.1007/s13348-019-00266-1.
- [16] H. Shen, T. Ramirez, and F. Ye, "A computational approach to higher Jacobian ideals," *Involve a journal of Mathematics*, Mar. 2025.
- [17] F. Ye, "On the Structure of Second Jacobian Ideals," *Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry*, Mar. 2025, doi: 10.1007/s13366-025-00791-0.
- [18] T. Ramirez, H. Shen, and F. Ye, "A computational approach to higher Jacobian ideals," *Involve, a Journal of Mathematics*, 2024.